Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A generalisation of Schenkman's theorem (2009.08145v1)

Published 17 Sep 2020 in math.GR

Abstract: Let $G$ be a finite group and let $\mathfrak{F}$ be a hereditary saturated formation. We denote by $\mathbf{Z}{\mathfrak{F}}(G)$ the product of all normal subgroups $N$ of $G$ such that every chief factor $H/K$ of $G$ below $N$ is $\mathfrak{F}$-central in $G$, that is, [ (H/K) \rtimes (G/\mathbf{C}{G}(H/K)) \in \mathfrak{F}. ]A subgroup $A \leq G$ is said to be $\mathfrak{F}$-subnormal in the sense of Kegel, or $K$-$\mathfrak{F}$-subnormal in $G$, if there is a subgroup chain [ A = A_0 \leq A_1 \leq \ldots \leq A_n = G ] such that either $A_{i-1} \trianglelefteq A_{i}$ or $A_i / (A_{i-1}){A_i} \in \mathfrak{F}$ for all $i = 1, \ldots , n$. In this paper, we prove the following generalisation of Schenkman's Theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let $\mathfrak{F}$ be a hereditary saturated formation and let $S$ be a $K$-$\mathfrak{F}$-subnormal subgroup of $G$. If $\mathbf{Z}{\mathfrak{F}}(E) = 1$ for every subgroup $E$ of $G$ such that $S \leq E$ then $\mathbf{C}_{G}(D) \leq D$, where $D = S{\mathfrak{F}}$ is the $\mathfrak{F}$-residual of $S$.

Summary

We haven't generated a summary for this paper yet.