Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Urban Traffic Flow Forecast Based on FastGCRNN (2009.08087v1)

Published 17 Sep 2020 in cs.AI

Abstract: Traffic forecasting is an important prerequisite for the application of intelligent transportation systems in urban traffic networks. The existing works adopted RNN and CNN/GCN, among which GCRN is the state of art work, to characterize the temporal and spatial correlation of traffic flows. However, it is hard to apply GCRN to the large scale road networks due to high computational complexity. To address this problem, we propose to abstract the road network into a geometric graph and build a Fast Graph Convolution Recurrent Neural Network (FastGCRNN) to model the spatial-temporal dependencies of traffic flow. Specifically, We use FastGCN unit to efficiently capture the topological relationship between the roads and the surrounding roads in the graph with reducing the computational complexity through importance sampling, combine GRU unit to capture the temporal dependency of traffic flow, and embed the spatiotemporal features into Seq2Seq based on the Encoder-Decoder framework. Experiments on large-scale traffic data sets illustrate that the proposed method can greatly reduce computational complexity and memory consumption while maintaining relatively high accuracy.

Citations (20)

Summary

We haven't generated a summary for this paper yet.