Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Certifying Confidence via Randomized Smoothing (2009.08061v2)

Published 17 Sep 2020 in cs.LG and stat.ML

Abstract: Randomized smoothing has been shown to provide good certified-robustness guarantees for high-dimensional classification problems. It uses the probabilities of predicting the top two most-likely classes around an input point under a smoothing distribution to generate a certified radius for a classifier's prediction. However, most smoothing methods do not give us any information about the confidence with which the underlying classifier (e.g., deep neural network) makes a prediction. In this work, we propose a method to generate certified radii for the prediction confidence of the smoothed classifier. We consider two notions for quantifying confidence: average prediction score of a class and the margin by which the average prediction score of one class exceeds that of another. We modify the Neyman-Pearson lemma (a key theorem in randomized smoothing) to design a procedure for computing the certified radius where the confidence is guaranteed to stay above a certain threshold. Our experimental results on CIFAR-10 and ImageNet datasets show that using information about the distribution of the confidence scores allows us to achieve a significantly better certified radius than ignoring it. Thus, we demonstrate that extra information about the base classifier at the input point can help improve certified guarantees for the smoothed classifier. Code for the experiments is available at https://github.com/aounon/cdf-smoothing.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com