Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

AAG: Self-Supervised Representation Learning by Auxiliary Augmentation with GNT-Xent Loss (2009.07994v2)

Published 17 Sep 2020 in cs.CV and cs.LG

Abstract: Self-supervised representation learning is an emerging research topic for its powerful capacity in learning with unlabeled data. As a mainstream self-supervised learning method, augmentation-based contrastive learning has achieved great success in various computer vision tasks that lack manual annotations. Despite current progress, the existing methods are often limited by extra cost on memory or storage, and their performance still has large room for improvement. Here we present a self-supervised representation learning method, namely AAG, which is featured by an auxiliary augmentation strategy and GNT-Xent loss. The auxiliary augmentation is able to promote the performance of contrastive learning by increasing the diversity of images. The proposed GNT-Xent loss enables a steady and fast training process and yields competitive accuracy. Experiment results demonstrate the superiority of AAG to previous state-of-the-art methods on CIFAR10, CIFAR100, and SVHN. Especially, AAG achieves 94.5% top-1 accuracy on CIFAR10 with batch size 64, which is 0.5% higher than the best result of SimCLR with batch size 1024.

Citations (1)

Summary

We haven't generated a summary for this paper yet.