Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improved Neural Network Monte Carlo Simulation (2009.07819v2)

Published 16 Sep 2020 in hep-ph, hep-ex, physics.comp-ph, and stat.ML

Abstract: The algorithm for Monte Carlo simulation of parton-level events based on an Artificial Neural Network (ANN) proposed in arXiv:1810.11509 is used to perform a simulation of $H\to 4\ell$ decay. Improvements in the training algorithm have been implemented to avoid numerical instabilities. The integrated decay width evaluated by the ANN is within 0.7% of the true value and unweighting efficiency of 26% is reached. While the ANN is not automatically bijective between input and output spaces, which can lead to issues with simulation quality, we argue that the training procedure naturally prefers bijective maps, and demonstrate that the trained ANN is bijective to a very good approximation.

Citations (33)

Summary

We haven't generated a summary for this paper yet.