Papers
Topics
Authors
Recent
2000 character limit reached

On the Curse of Memory in Recurrent Neural Networks: Approximation and Optimization Analysis

Published 16 Sep 2020 in cs.LG, math.OC, and stat.ML | (2009.07799v3)

Abstract: We study the approximation properties and optimization dynamics of recurrent neural networks (RNNs) when applied to learn input-output relationships in temporal data. We consider the simple but representative setting of using continuous-time linear RNNs to learn from data generated by linear relationships. Mathematically, the latter can be understood as a sequence of linear functionals. We prove a universal approximation theorem of such linear functionals, and characterize the approximation rate and its relation with memory. Moreover, we perform a fine-grained dynamical analysis of training linear RNNs, which further reveal the intricate interactions between memory and learning. A unifying theme uncovered is the non-trivial effect of memory, a notion that can be made precise in our framework, on approximation and optimization: when there is long term memory in the target, it takes a large number of neurons to approximate it. Moreover, the training process will suffer from slow downs. In particular, both of these effects become exponentially more pronounced with memory - a phenomenon we call the "curse of memory". These analyses represent a basic step towards a concrete mathematical understanding of new phenomenon that may arise in learning temporal relationships using recurrent architectures.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 5 likes about this paper.