Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Related by Similarity II: Poncelet 3-Periodics in the Homothetic Pair and the Brocard Porism (2009.07647v1)

Published 16 Sep 2020 in math.MG, cs.CG, cs.GR, and cs.RO

Abstract: Previously we showed the family of 3-periodics in the elliptic billiard (confocal pair) is the image under a variable similarity transform of poristic triangles (those with non-concentric, fixed incircle and circumcircle). Both families conserve the ratio of inradius to circumradius and therefore also the sum of cosines. This is consisten with the fact that a similarity preserves angles. Here we study two new Poncelet 3-periodic families also tied to each other via a variable similarity: (i) a first one interscribed in a pair of concentric, homothetic ellipses, and (ii) a second non-concentric one known as the Brocard porism: fixed circumcircle and Brocard inellipse. The Brocard points of this family are stationary at the foci of the inellipse. A key common invariant is the Brocard angle, and therefore the sum of cotangents. This raises an interesting question: given a non-concentric Poncelet family (limited or not to the outer conic being a circle), can a similar doppelg\"anger always be found interscribed in a concentric, axis-aligned ellipse and/or conic pair?

Citations (13)

Summary

We haven't generated a summary for this paper yet.