Determining monodromy groups of abelian varieties
Abstract: Associated to an abelian variety over a number field are several interesting and related groups: the motivic Galois group, the Mumford-Tate group, $\ell$-adic monodromy groups, and the Sato-Tate group. Assuming the Mumford-Tate conjecture, we show that from two well chosen Frobenius polynomials of our abelian variety, we can recover the identity component of these groups (or at least an inner form), up to isomorphism, along with their natural representations. We also obtain a practical probabilistic algorithm to compute these groups by considering more and more Frobenius polynomials; the groups are connected and reductive and thus can be expressed in terms of root datum. These groups are conjecturally linked with algebraic cycles and in particular we obtain a probabilistic algorithm to compute the dimension of the Hodge classes of our abelian variety for any fixed degree.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.