Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic Property Graph for Scalable Knowledge Graph Analytics (2009.07410v2)

Published 16 Sep 2020 in cs.DB and cs.SI

Abstract: Graphs are a natural and fundamental representation of describing the activities, relationships, and evolution of various complex systems. Many domains such as communication, citation, procurement, biology, social media, and transportation can be modeled as a set of entities and their relationships. Resource Description Framework (RDF) and Labeled Property Graph (LPG) are two of the most used data models to encode information in a graph. Both models are similar in terms of using basic graph elements such as nodes and edges but differ in terms of modeling approach, expressibility, serialization, and target applications. RDF is a flexible data exchange model for expressing information about entities but it tends to a have high memory footprint and inefficient storage, which does not make it a natural choice to perform scalable graph analytics. In contrast, LPG has gained traction as a reliable model in performing scalable graph analytic tasks such as sub-graph matching, network alignment, and real-time knowledge graph query. It provides efficient storage, fast traversal, and flexibility to model various real-world domains. At the same time, the LPGs lack the support of a formal knowledge representation such as an ontology to provide automated knowledge inference. We propose Semantic Property Graph (SPG) as a logical projection of reified RDF into LPG model. SPG continues to use RDF ontology to define type hierarchy of the projected graph and validate it against a given ontology. We present a framework to convert reified RDF graphs into SPG using two different computing environments. We also present cloud-based graph migration capabilities using Amazon Web Services.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Sumit Purohit (11 papers)
  2. Nhuy Van (1 paper)
  3. George Chin (8 papers)
Citations (18)

Summary

We haven't generated a summary for this paper yet.