Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gauss Hypergeometric Representations of the Ferrers Function of the Second Kind (2009.07318v2)

Published 15 Sep 2020 in math.CA

Abstract: We derive all eighteen Gauss hypergeometric representations for the Ferrers function of the second kind, each with a different argument. They are obtained from the eighteen hypergeometric representations of the associated Legendre function of the second kind by using a limit representation. For the 18 hypergeometric arguments which correspond to these representations, we give geometrical descriptions of the corresponding convergence regions in the complex plane. In addition, we consider a corresponding single sum Fourier expansion for the Ferrers function of the second kind. In four of the eighteen cases, the determination of the Ferrers function of the second kind requires the evaluation of the hypergeometric function separately above and below the branch cut at $[1,\infty)$. In order to complete these derivations, we use well-known results to derive expressions for the hypergeometric function above and below its branch cut. Finally we give a detailed review of the 1888 paper by Richard Olbricht who was the first to study hypergeometric representations of Legendre functions.

Citations (5)

Summary

We haven't generated a summary for this paper yet.