Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk Bounds for Robust Deep Learning (2009.06202v1)

Published 14 Sep 2020 in cs.LG, cs.AI, cs.NE, math.ST, stat.ML, and stat.TH

Abstract: It has been observed that certain loss functions can render deep-learning pipelines robust against flaws in the data. In this paper, we support these empirical findings with statistical theory. We especially show that empirical-risk minimization with unbounded, Lipschitz-continuous loss functions, such as the least-absolute deviation loss, Huber loss, Cauchy loss, and Tukey's biweight loss, can provide efficient prediction under minimal assumptions on the data. More generally speaking, our paper provides theoretical evidence for the benefits of robust loss functions in deep learning.

Citations (16)

Summary

We haven't generated a summary for this paper yet.