Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Trading off Accuracy for Speedup: Multiplier Bootstraps for Subgraph Counts (2009.06170v5)

Published 14 Sep 2020 in stat.ME, math.ST, stat.ML, and stat.TH

Abstract: We propose a new class of multiplier bootstraps for count functionals, ranging from a fast, approximate linear bootstrap tailored to sparse, massive graphs to a quadratic bootstrap procedure that offers refined accuracy for smaller, denser graphs. For the fast, approximate linear bootstrap, we show that $\sqrt{n}$-consistent inference of the count functional is attainable in certain computational regimes that depend on the sparsity level of the graph. Furthermore, even in more challenging regimes, we prove that our bootstrap procedure offers valid coverage and vanishing confidence intervals. For the quadratic bootstrap, we establish an Edgeworth expansion and show that this procedure offers higher-order accuracy under appropriate sparsity conditions. We complement our theoretical results with a simulation study and real data analysis and verify that our procedure offers state-of-the-art performance for several functionals.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.