Papers
Topics
Authors
Recent
2000 character limit reached

Trading off Accuracy for Speedup: Multiplier Bootstraps for Subgraph Counts

Published 14 Sep 2020 in stat.ME, math.ST, stat.ML, and stat.TH | (2009.06170v5)

Abstract: We propose a new class of multiplier bootstraps for count functionals, ranging from a fast, approximate linear bootstrap tailored to sparse, massive graphs to a quadratic bootstrap procedure that offers refined accuracy for smaller, denser graphs. For the fast, approximate linear bootstrap, we show that $\sqrt{n}$-consistent inference of the count functional is attainable in certain computational regimes that depend on the sparsity level of the graph. Furthermore, even in more challenging regimes, we prove that our bootstrap procedure offers valid coverage and vanishing confidence intervals. For the quadratic bootstrap, we establish an Edgeworth expansion and show that this procedure offers higher-order accuracy under appropriate sparsity conditions. We complement our theoretical results with a simulation study and real data analysis and verify that our procedure offers state-of-the-art performance for several functionals.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.