Orbifold Gromov--Witten theory of weighted blowups (2009.06144v2)
Abstract: Consider a compact symplectic sub-orbifold groupoid $\sf S$ of a compact symplectic orbifold groupoid $(\mathsf X,\omega)$. Let $\mathsf X_{\mathfrak a}$ be the weight-$\mathfrak a$ blowup of $\sf X$ along $\sf S$, and $\mathsf D_{\mathfrak a}=\mathsf{PN}{\mathfrak a}$ be the exceptional divisor, where $\sf N$ is the normal bundle of $\sf S$ in $\sf X$. In this paper we show that the absolute orbifold Gromov--Witten theory of $\mathsf X{\mathfrak a}$ can be effectively and uniquely reconstructed from the absolute orbifold Gromov--Witten theories of $\sf X$, $\sf S$ and $\mathsf D_{\mathfrak a}$, the natural restriction homomorphism $H*_{\text{CR}}({\sf X})\rightarrow H*_{\text{CR}}({\sf S})$ and the first Chern class of the tautological line bundle over $\mathsf D_{\mathfrak a}$. To achieve this we first prove similar results for the relative orbifold Gromov--Witten theories of $(\mathsf X_{\mathfrak a}|\mathsf D_{\mathfrak a})$ and $(\mathsf N_{\mathfrak a}|\mathsf D_{\mathfrak a})$. As applications of these results, we prove an orbifold version of a conjecture of Maulik--Pandharipande on the Gromov--Witten theory of blowups along complete intersections, a conjecture on the Gromov--Witten theory of root constructions and a conjecture on Leray--Hirsch result for orbifold Gromov--Witten theory of Tseng--You.