Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniform Sobolev Estimates on compact manifolds involving singular potentials (2009.06075v2)

Published 13 Sep 2020 in math.AP, math.CA, and math.SP

Abstract: We obtain generalizations of the uniform Sobolev inequalities of Kenig, Ruiz and the fourth author \cite{KRS} for Euclidean spaces and Dos Santos Ferreira, Kenig and Salo \cite{DKS} for compact Riemannian manifolds involving critically singular potentials $V\in L{n/2}$. We also obtain the analogous improved quasimode estimates of the the first, third and fourth authors \cite{BSS} , Hassell and Tacy \cite{HassellTacy}, the first and fourth author \cite{SBLog}, and Hickman \cite{Hickman} as well as analogues of the improved uniform Sobolev estimates of \cite{BSSY} and \cite{Hickman} involving such potentials. Additionally, on $Sn$, we obtain sharp uniform Sobolev inequalities involving such potentials for the optimal range of exponents, which extend the results of S. Huang and the fourth author \cite{SHSo}. For general Riemannian manifolds we improve the earlier results in \cite{BSS} by obtaining quasimode estimates for a larger (and optimal) range of exponents under the weaker assumption that $V\in L{n/2}$.

Summary

We haven't generated a summary for this paper yet.