Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterizing Twitter Interaction during COVID-19 pandemic using Complex Networks and Text Mining (2009.05619v1)

Published 11 Sep 2020 in cs.CY, cs.IR, and cs.SI

Abstract: The outbreak of covid-19 started many months ago, the reported origin was in Wuhan Market, China. Fastly, this virus was propagated to other countries because the access to international travels is affordable and many countries have a distance of some flight hours, besides borders were a constant flow of people. By the other hand, Internet users have the habits of sharing content using Social Networks and issues, problems, thoughts about Covdid-19 were not an exception. Therefore, it is possible to analyze Social Network interaction from one city, country to understand the impact generated by this global issue. South America is one region with developing countries with challenges to face related to Politics, Economy, Public Health and other. Therefore, the scope of this paper is to analyze the interaction on Twitter of South American countries and characterize the flow of data through the users using Complex Network representation and Text Mining. The preliminary experiments introduces the idea of existence of patterns, similar to Complex Systems. Besides, the degree distribution confirm the idea of having a System and visualization of Adjacency Matrices show the presence of users' group publishing and interacting together during the time, there is a possibility of identification of robots sending posts constantly.

Citations (2)

Summary

We haven't generated a summary for this paper yet.