Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decompositions of moduli spaces of vector bundles and graph potentials (2009.05568v3)

Published 11 Sep 2020 in math.AG, math.GT, math.QA, and math.SG

Abstract: We propose a conjectural semiorthogonal decomposition for the derived category of the moduli space of stable rank 2 bundles with fixed determinant of odd degree, independently formulated by Narasimhan. We discuss some evidence for, and furthermore propose semiorthogonal decompositions with additional structure. We also discuss two other decompositions. One is a decomposition of this moduli space in the Grothendieck ring of varieties, which relates to various known motivic decompositions. The other is the critical value decomposition of a candidate mirror Landau-Ginzburg model given by graph potentials, which in turn is related under mirror symmetry to Munoz's decomposition of quantum cohomology. This corresponds to an orthogonal decomposition of the Fukaya category. We will explain how these decompositions can be seen as evidence for the conjectural semiorthogonal decomposition.

Summary

We haven't generated a summary for this paper yet.