Papers
Topics
Authors
Recent
2000 character limit reached

Hypercontractivity on the symmetric group

Published 11 Sep 2020 in cs.DM, math.CO, math.FA, and math.PR | (2009.05503v2)

Abstract: The hypercontractive inequality is a fundamental result in analysis, with many applications throughout discrete mathematics, theoretical computer science, combinatorics and more. So far, variants of this inequality have been proved mainly for product spaces, which raises the question of whether analogous results hold over non-product domains. We consider the symmetric group, $S_n$, one of the most basic non-product domains, and establish hypercontractive inequalities on it. Our inequalities are most effective for the class of \emph{global functions} on $S_n$, which are functions whose $2$-norm remains small when restricting $O(1)$ coordinates of the input, and assert that low-degree, global functions have small $q$-norms, for $q>2$. As applications, we show: 1. An analog of the level-$d$ inequality on the hypercube, asserting that the mass of a global function on low-degrees is very small. We also show how to use this inequality to bound the size of global, product-free sets in the alternating group $A_n$. 2. Isoperimetric inequalities on the transposition Cayley graph of $S_n$ for global functions, that are analogous to the KKL theorem and to the small-set expansion property in the Boolean hypercube. 3. Hypercontractive inequalities on the multi-slice, and stability versions of the Kruskal--Katona Theorem in some regimes of parameters.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.