Papers
Topics
Authors
Recent
2000 character limit reached

Modulational instability of periodic standing waves in the derivative NLS equation

Published 11 Sep 2020 in nlin.SI, math-ph, math.AP, math.DS, math.MP, and nlin.PS | (2009.05425v2)

Abstract: We consider the periodic standing waves in the derivative nonlinear Schrodinger (DNLS) equation arising in plasma physics. By using a newly developed algebraic method with two eigenvalues, we classify all periodic standing waves in terms of eight eigenvalues of the Kaup-Newell spectral problem located at the end points of the spectral bands outside the real line. The analytical work is complemented with the numerical approximation of the spectral bands, this enables us to fully characterize the modulational instability of the periodic standing waves in the DNLS equation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.