Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GTEA: Inductive Representation Learning on Temporal Interaction Graphs via Temporal Edge Aggregation (2009.05266v3)

Published 11 Sep 2020 in cs.LG and stat.ML

Abstract: In this paper, we propose the Graph Temporal Edge Aggregation (GTEA) framework for inductive learning on Temporal Interaction Graphs (TIGs). Different from previous works, GTEA models the temporal dynamics of interaction sequences in the continuous-time space and simultaneously takes advantage of both rich node and edge/ interaction attributes in the graph. Concretely, we integrate a sequence model with a time encoder to learn pairwise interactional dynamics between two adjacent nodes.This helps capture complex temporal interactional patterns of a node pair along the history, which generates edge embeddings that can be fed into a GNN backbone. By aggregating features of neighboring nodes and the corresponding edge embeddings, GTEA jointly learns both topological and temporal dependencies of a TIG. In addition, a sparsity-inducing self-attention scheme is incorporated for neighbor aggregation, which highlights more important neighbors and suppresses trivial noises for GTEA. By jointly optimizing the sequence model and the GNN backbone, GTEA learns more comprehensive node representations capturing both temporal and graph structural characteristics. Extensive experiments on five large-scale real-world datasets demonstrate the superiority of GTEA over other inductive models.

Summary

We haven't generated a summary for this paper yet.