Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex co-compact representations of 3-manifold groups (2009.05191v2)

Published 11 Sep 2020 in math.GT and math.DG

Abstract: A representation of a finitely generated group into the projective general linear group is called convex co-compact if it has finite kernel and its image acts convex co-compactly on a properly convex domain in real projective space. We prove that the fundamental group of a closed irreducible orientable 3-manifold can admit such a representation only when the manifold is geometric (with Euclidean, Hyperbolic, or Euclidean $\times$ Hyperbolic geometry) or when every component in the geometric decomposition is hyperbolic. In each case, we describe the structure of such examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (55)
  1. 3-manifold groups. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2015.
  2. Werner Ballmann. Lectures on spaces of nonpositive curvature, volume 25 of DMV Seminar. Birkhäuser Verlag, Basel, 1995. With an appendix by Misha Brin.
  3. Convex projective structures on nonhyperbolic three-manifolds. Geom. Topol., 22(3):1593–1646, 2018.
  4. Yves Benoist. Convexes divisibles. II. Duke Math. J., 120(1):97–120, 2003.
  5. Yves Benoist. Convexes divisibles. I. In Algebraic groups and arithmetic, pages 339–374. Tata Inst. Fund. Res., Mumbai, 2004.
  6. Yves Benoist. Convexes divisibles. IV. Structure du bord en dimension 3. Invent. Math., 164(2):249–278, 2006.
  7. Filling-invariants at infinity for manifolds of nonpositive curvature. Trans. Amer. Math. Soc., 350(8):3393–3405, 1998.
  8. Projective geometry and projective metrics. Academic Press Inc., New York, N. Y., 1953.
  9. Pierre-Louis Blayac. Topological mixing of the geodesic flow on convex projective manifolds. To appear in Annales de l’Institut Fourier.
  10. Pierre-Louis Blayac. Patterson–Sullivan densities in convex projective geometry. arXiv e-prints, page arXiv:2106.08089, June 2021.
  11. Francis Bonahon. Geometric structures on 3-manifolds. In Handbook of geometric topology, pages 93–164. North-Holland, Amsterdam, 2002.
  12. Anosov representations and dominated splittings. J. Eur. Math. Soc. (JEMS), 21(11):3343–3414, 2019.
  13. Ergodicity and equidistribution in hilbert geometry. Journal of Modern Dynamics, 19(0):879–945, 2023.
  14. Richard D. Canary. Anosov Representations: Informal Lecture Notes, 2020. URL: http://www.math.lsa.umich.edu/~canary/Anosovlecnotes.pdf.
  15. On convex projective manifolds and cusps. Advances in Mathematics, 277:181 – 251, 2015.
  16. Mickaël Crampon. Entropies of strictly convex projective manifolds. J. Mod. Dyn., 3(4):511–547, 2009.
  17. Topological restrictions on Anosov representations. J. Topol., 13(4):1497–1520, 2020.
  18. Francois Dahmani. Combination of convergence groups. Geom. Topol., 7(2):933–963, 2003.
  19. Convex cocompact actions in real projective geometry. arXiv e-prints, page arXiv:1704.08711, Apr 2017.
  20. Convex cocompactness in pseudo-Riemannian hyperbolic spaces. Geom. Dedicata, 192:87–126, 2018.
  21. Tree-graded spaces and asymptotic cones of groups. Topology, 44(5):959–1058, 2005. With an appendix by Denis Osin and Mark Sapir.
  22. Eduard Einstein. Hierarchies for relatively hyperbolic virtually special groups, 2019.
  23. Stefan Friedl. Centralizers in 3-manifold groups. RIMS Kokyuroku, 1747:23–34, 2011.
  24. David Gabai. Convergence groups are Fuchsian groups. Ann. of Math. (2), 136(3):447–510, 1992.
  25. Anosov representations and proper actions. Geom. Topol., 21(1):485–584, 2017.
  26. Anosov representations: domains of discontinuity and applications. Invent. Math., 190(2):357–438, 2012.
  27. Hadamard spaces with isolated flats, with an appendix written jointly with Mohamad Hindawi. Geom. Topol., 9(3):1501–1538, 2005.
  28. Mitul Islam. Rank one Hilbert geometries. To appear in Geom. Topol.
  29. A flat torus theorem for convex co-compact actions of projective linear groups. J. Lond. Math. Soc. (2), 103(2):470–489, 2021.
  30. The structure of relatively hyperbolic groups in convex real projective geometry. arXiv e-prints, page arXiv:2203.16596, March 2022.
  31. Convex cocompact actions of relatively hyperbolic groups. Geom. Topol., 27(2):417–511, 2023.
  32. Relativizing characterizations of Anosov subgroups, I. arXiv e-prints, page arXiv:1807.00160, June 2018.
  33. Morse actions of discrete groups on symmetric space. ArXiv e-prints, March 2014.
  34. A morse lemma for quasigeodesics in symmetric spaces and euclidean buildings. Geom. Topol., 22(7):3827–3923, 2018.
  35. N. H. Kuiper. On convex locally-projective spaces. In Convegno Internazionale di Geometria Differenziale, Italia, 1953, pages pp 200–213. Edizioni Cremonese, Roma, 1954.
  36. François Labourie. Anosov flows, surface groups and curves in projective space. Invent. Math., 165(1):51–114, 2006.
  37. Bernhard Leeb. 3333-manifolds with(out) metrics of nonpositive curvature. Invent. Math., 122(2):277–289, 1995.
  38. Discrete Coxeter groups. arXiv e-prints, page arXiv:2109.06758, September 2021.
  39. John W. Morgan and Frederick Tsz-Ho Fong. Ricci flow and geometrization of 3-manifolds, volume 53 of University Lecture Series. American Mathematical Society, Providence, RI, 2010.
  40. Degenerations of hyperbolic structures. III. Actions of 3333-manifold groups on trees and Thurston’s compactness theorem. Ann. of Math. (2), 127(3):457–519, 1988.
  41. M. S. Raghunathan. Discrete subgroups of Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68. Springer-Verlag, New York-Heidelberg, 1972.
  42. Peter Scott. The geometries of 3333-manifolds. Bull. London Math. Soc., 15(5):401–487, 1983.
  43. Peter Scott. There are no fake Seifert fibre spaces with infinite π1subscript𝜋1\pi_{1}italic_π start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. Ann. of Math. (2), 117(1):35–70, 1983.
  44. G. A. Swarup. On the cut point conjecture. Electron. Res. Announc. Amer. Math. Soc., 2(2):98–100 (electronic), 1996.
  45. Tammo tom Dieck. Algebraic topology. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008.
  46. William P. Thurston. Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy.
  47. Hung Cong Tran. Relations between various boundaries of relatively hyperbolic groups. Internat. J. Algebra Comput., 23(7):1551–1572, 2013.
  48. Konstantinos Tsouvalas. Anosov representations, strongly convex cocompact groups and weak eigenvalue gaps. arXiv e-prints, page arXiv:2008.04462, August 2020.
  49. Pekka Tukia. Homeomorphic conjugates of Fuchsian groups. J. Reine Angew. Math., 391:1–54, 1988.
  50. Theodore Weisman. An extended definition of Anosov representation for relatively hyperbolic groups. arXiv e-prints, page arXiv:2205.07183, May 2022.
  51. Theodore Weisman. Dynamical properties of convex cocompact actions in projective space. Journal of Topology, 16(3):990–1047, August 2023.
  52. Feng Zhu. Relatively dominated representations. Ann. Inst. Fourier (Grenoble), 71(5):2169–2235, 2021.
  53. Andrew Zimmer. Projective Anosov representations, convex cocompact actions, and rigidity. J. Differential Geom., 119(3):513–586, 2021.
  54. Andrew Zimmer. A higher-rank rigidity theorem for convex real projective manifolds. Geometry & Topology, 27(7):2899–2936, September 2023.
  55. Regularity of limit sets of Anosov representations. arXiv e-prints, page arXiv:1903.11021, March 2019.
Citations (2)

Summary

We haven't generated a summary for this paper yet.