Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Talenti-type comparison theorem for $\mathrm{RCD}(K,N)$ spaces and applications

Published 7 Sep 2020 in math.AP, math.DG, math.FA, and math.MG | (2009.03189v2)

Abstract: We prove pointwise and $L{p}$-gradient comparison results for solutions to elliptic Dirichlet problems defined on open subsets of a (possibly non-smooth) space with positive Ricci curvature (more precisely of an $\mathrm{RCD}(K,N)$ metric measure space, with $K>0$ and $N\in (1,\infty)$). The obtained Talenti-type comparison is sharp, rigid and stable with respect to $L{2}$/measured-Gromov-Hausdorff topology; moreover, several aspects seem new even for smooth Riemannian manifolds. As applications of such Talenti-type comparison, we prove a series of improved Sobolev-type inequalities, and an $\mathrm{RCD}$ version of the St.~Venant-P\'olya torsional rigidity comparison theorem (with associated rigidity and stability statements). Finally, we give a probabilistic interpretation (in the setting of smooth Riemannian manifolds) of the aforementioned comparison results, in terms of exit time from an open subset for the Brownian motion.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.