Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Talenti-type comparison theorem for $\mathrm{RCD}(K,N)$ spaces and applications (2009.03189v2)

Published 7 Sep 2020 in math.AP, math.DG, math.FA, and math.MG

Abstract: We prove pointwise and $L{p}$-gradient comparison results for solutions to elliptic Dirichlet problems defined on open subsets of a (possibly non-smooth) space with positive Ricci curvature (more precisely of an $\mathrm{RCD}(K,N)$ metric measure space, with $K>0$ and $N\in (1,\infty)$). The obtained Talenti-type comparison is sharp, rigid and stable with respect to $L{2}$/measured-Gromov-Hausdorff topology; moreover, several aspects seem new even for smooth Riemannian manifolds. As applications of such Talenti-type comparison, we prove a series of improved Sobolev-type inequalities, and an $\mathrm{RCD}$ version of the St.~Venant-P\'olya torsional rigidity comparison theorem (with associated rigidity and stability statements). Finally, we give a probabilistic interpretation (in the setting of smooth Riemannian manifolds) of the aforementioned comparison results, in terms of exit time from an open subset for the Brownian motion.

Summary

We haven't generated a summary for this paper yet.