Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysing Twitter Semantic Networks: the case of 2018 Italian Elections (2009.02960v4)

Published 7 Sep 2020 in cs.SI and physics.app-ph

Abstract: Social media play a key role in shaping citizens' political opinion. According to the Eurobarometer, the percentage of EU citizens employing online social networks on a daily basis has increased from 18% in 2010 to 48% in 2019. The entwinement between social media and the unfolding of political dynamics has motivated the interest of researchers for the analysis of users online behavior - with particular emphasis on group polarization during debates and echo-chambers formation. In this context, attention has been predominantly directed towards the study of online relations between users while semantic aspects have remained under-explored. In the present paper, we aim at filling this gap by adopting a two-steps approach. First, we identify the discursive communities animating the political debate in the run up of the 2018 Italian Elections as groups of users with a significantly-similar retweeting behavior. Second, we study the semantic mechanisms that shape their internal discussions by monitoring, on a daily basis, the structural evolution of the semantic networks they induce. Above and beyond specifying the semantic peculiarities of the Italian electoral competition, our approach innovates studies of online political discussions in two main ways. On the one hand, it grounds semantic analysis within users' behaviors by implementing a method, rooted in statistical theory, that guarantees that our inference of socio-semantic structures is not biased by any unsupported assumption about missing information; on the other, it is completely automated as it does not rest upon any manual labelling (either based on the users' features or on their sharing patterns). These elements make our method applicable to any Twitter discussion regardless of the language or the topic addressed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Tommaso Radicioni (2 papers)
  2. Fabio Saracco (42 papers)
  3. Elena Pavan (2 papers)
  4. Tiziano Squartini (73 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.