Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Twisted Ehresmann Schauenburg bialgebroids (2009.02764v1)

Published 6 Sep 2020 in math.QA

Abstract: We construct an invertible normalised 2 cocycle on the Ehresmann Schauenburg bialgebroid of a cleft Hopf Galois extension under the condition that the corresponding Hopf algebra is cocommutative and the image of the unital cocycle corresponding to this cleft Hopf Galois extension belongs to the centre of the coinvariant subalgebra. Moreover, we show that any Ehresmann Schauenburg bialgebroid of this kind is isomorphic to a 2-cocycle twist of the Ehresmann Schauenburg bialgebroid corresponding to a Hopf Galois extension without cocycle, where comodule algebra is an ordinary smash product of the coinvariant subalgebra and the Hopf algebra (i.e. $\C(B/#_{\sigma}H, H)\simeq \C(B#H, H){\tilde{\sigma}}$). We also study the theory in the case of a Galois object where the base is trivial but without requiring the Hopf algebra to be cocommutative.

Summary

We haven't generated a summary for this paper yet.