Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Duality theory for enriched Priestley spaces (2009.02303v1)

Published 4 Sep 2020 in math.CT

Abstract: The term Stone-type duality often refers to a dual equivalence between a category of lattices or other partially ordered structures on one side and a category of topological structures on the other. This paper is part of a larger endeavour that aims to extend a web of Stone-type dualities from ordered to metric structures and, more generally, to quantale-enriched categories. In particular, we improve our previous work and show how certain duality results for categories of [0,1]-enriched Priestley spaces and [0,1]-enriched relations can be restricted to functions. In a broader context, we investigate the category of quantale-enriched Priestley spaces and continuous functors, with emphasis on those properties which identify the algebraic nature of the dual of this category.

Summary

We haven't generated a summary for this paper yet.