Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simulation-Assisted Decorrelation for Resonant Anomaly Detection (2009.02205v1)

Published 4 Sep 2020 in hep-ph, hep-ex, physics.data-an, and stat.ML

Abstract: A growing number of weak- and unsupervised machine learning approaches to anomaly detection are being proposed to significantly extend the search program at the Large Hadron Collider and elsewhere. One of the prototypical examples for these methods is the search for resonant new physics, where a bump hunt can be performed in an invariant mass spectrum. A significant challenge to methods that rely entirely on data is that they are susceptible to sculpting artificial bumps from the dependence of the machine learning classifier on the invariant mass. We explore two solutions to this challenge by minimally incorporating simulation into the learning. In particular, we study the robustness of Simulation Assisted Likelihood-free Anomaly Detection (SALAD) to correlations between the classifier and the invariant mass. Next, we propose a new approach that only uses the simulation for decorrelation but the Classification without Labels (CWoLa) approach for achieving signal sensitivity. Both methods are compared using a full background fit analysis on simulated data from the LHC Olympics and are robust to correlations in the data.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com