Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering in VANET: Algorithms and Challenges (2009.01964v1)

Published 4 Sep 2020 in cs.NI

Abstract: Clustering is an important concept in vehicular ad hoc network (VANET) where several vehicles join to form a group based on common features. Mobility-based clustering strategies are the most common in VANET clustering; however, machine learning and fuzzy logic algorithms are also the basis of many VANET clustering algorithms. Some VANET clustering algorithms integrate machine learning and fuzzy logic algorithms to make the cluster more stable and efficient. Network mobility (NEMO) and multi-hop-based strategies are also used for VANET clustering. Mobility and some other clustering strategies are presented in the existing literature reviews; however, extensive study of intelligence-based, mobility-based, and multi-hop-based strategies still missing in the VANET clustering reviews. In this paper, we presented a classification of intelligence-based clustering algorithms, mobility-based algorithms, and multi-hop-based algorithms with an analysis on the mobility metrics, evaluation criteria, challenges, and future directions of machine learning, fuzzy logic, mobility, NEMO, and multi-hop clustering algorithms.

Citations (3)

Summary

We haven't generated a summary for this paper yet.