Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-pulse solitary waves in a fourth-order nonlinear Schrödinger equation (2009.01647v3)

Published 3 Sep 2020 in nlin.PS and math.DS

Abstract: In the present work, we consider the existence and spectral stability of multi-pulse solitary wave solutions to a nonlinear Schr\"odinger equation with both fourth and second order dispersion terms. We first give a criterion for the existence of a single solitary wave solution in terms of the coefficients of the dispersion terms, and then show that a discrete family of multi-pulse solutions exists which is characterized by the distances between the individual pulses. We then reduce the spectral stability problem for these multi-pulses to computing the determinant of a matrix which is, to leading order, block diagonal. Under an additional assumption, which can be verified numerically, we show that all multi-pulses are spectrally unstable. For double pulses, numerical computations are presented which are in good agreement with our analytical results.

Summary

We haven't generated a summary for this paper yet.