Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Auto-Classifier: A Robust Defect Detector Based on an AutoML Head (2009.01573v1)

Published 3 Sep 2020 in cs.CV, cs.LG, and cs.NE

Abstract: The dominant approach for surface defect detection is the use of hand-crafted feature-based methods. However, this falls short when conditions vary that affect extracted images. So, in this paper, we sought to determine how well several state-of-the-art Convolutional Neural Networks perform in the task of surface defect detection. Moreover, we propose two methods: CNN-Fusion, that fuses the prediction of all the networks into a final one, and Auto-Classifier, which is a novel proposal that improves a Convolutional Neural Network by modifying its classification component using AutoML. We carried out experiments to evaluate the proposed methods in the task of surface defect detection using different datasets from DAGM2007. We show that the use of Convolutional Neural Networks achieves better results than traditional methods, and also, that Auto-Classifier out-performs all other methods, by achieving 100% accuracy and 100% AUC results throughout all the datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Vasco Lopes (17 papers)
  2. Luís A. Alexandre (35 papers)
Citations (8)