Papers
Topics
Authors
Recent
Search
2000 character limit reached

MixBoost: Synthetic Oversampling with Boosted Mixup for Handling Extreme Imbalance

Published 3 Sep 2020 in cs.LG and stat.ML | (2009.01571v1)

Abstract: Training a classification model on a dataset where the instances of one class outnumber those of the other class is a challenging problem. Such imbalanced datasets are standard in real-world situations such as fraud detection, medical diagnosis, and computational advertising. We propose an iterative data augmentation method, MixBoost, which intelligently selects (Boost) and then combines (Mix) instances from the majority and minority classes to generate synthetic hybrid instances that have characteristics of both classes. We evaluate MixBoost on 20 benchmark datasets, show that it outperforms existing approaches, and test its efficacy through significance testing. We also present ablation studies to analyze the impact of the different components of MixBoost.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.