Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

Mononizing Binocular Videos (2009.01424v1)

Published 3 Sep 2020 in eess.IV and cs.GR

Abstract: This paper presents the idea ofmono-nizingbinocular videos and a frame-work to effectively realize it. Mono-nize means we purposely convert abinocular video into a regular monocular video with the stereo informationimplicitly encoded in a visual but nearly-imperceptible form. Hence, wecan impartially distribute and show the mononized video as an ordinarymonocular video. Unlike ordinary monocular videos, we can restore from itthe original binocular video and show it on a stereoscopic display. To start,we formulate an encoding-and-decoding framework with the pyramidal de-formable fusion module to exploit long-range correspondences between theleft and right views, a quantization layer to suppress the restoring artifacts,and the compression noise simulation module to resist the compressionnoise introduced by modern video codecs. Our framework is self-supervised,as we articulate our objective function with loss terms defined on the input:a monocular term for creating the mononized video, an invertibility termfor restoring the original video, and a temporal term for frame-to-framecoherence. Further, we conducted extensive experiments to evaluate ourgenerated mononized videos and restored binocular videos for diverse typesof images and 3D movies. Quantitative results on both standard metrics anduser perception studies show the effectiveness of our method.

Citations (23)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.