Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Space and Chaos-Expansion Galerkin POD Low-order Discretization of PDEs for Uncertainty Quantification (2009.01055v1)

Published 2 Sep 2020 in math.DS, cs.NA, and math.NA

Abstract: The quantification of multivariate uncertainties in partial differential equations can easily exceed any computing capacity unless proper measures are taken to reduce the complexity of the model. In this work, we propose a multidimensional Galerkin Proper Orthogonal Decomposition that optimally reduces each dimension of a tensorized product space. We provide the analytical framework and results that define and quantify the low-dimensional approximation. We illustrate its application for uncertainty modeling with Polynomial Chaos Expansions and show its efficiency in a numerical example.

Citations (1)

Summary

We haven't generated a summary for this paper yet.