Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MALCOM: Generating Malicious Comments to Attack Neural Fake News Detection Models (2009.01048v2)

Published 1 Sep 2020 in cs.CL, cs.LG, and stat.ML

Abstract: In recent years, the proliferation of so-called "fake news" has caused much disruptions in society and weakened the news ecosystem. Therefore, to mitigate such problems, researchers have developed state-of-the-art models to auto-detect fake news on social media using sophisticated data science and machine learning techniques. In this work, then, we ask "what if adversaries attempt to attack such detection models?" and investigate related issues by (i) proposing a novel threat model against fake news detectors, in which adversaries can post malicious comments toward news articles to mislead fake news detectors, and (ii) developing MALCOM, an end-to-end adversarial comment generation framework to achieve such an attack. Through a comprehensive evaluation, we demonstrate that about 94% and 93.5% of the time on average MALCOM can successfully mislead five of the latest neural detection models to always output targeted real and fake news labels. Furthermore, MALCOM can also fool black box fake news detectors to always output real news labels 90% of the time on average. We also compare our attack model with four baselines across two real-world datasets, not only on attack performance but also on generated quality, coherency, transferability, and robustness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Thai Le (38 papers)
  2. Suhang Wang (118 papers)
  3. Dongwon Lee (65 papers)
Citations (56)