Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear stochastic modeling with Langevin regression (2009.01006v2)

Published 2 Sep 2020 in cond-mat.stat-mech, physics.comp-ph, and physics.flu-dyn

Abstract: Many physical systems characterized by nonlinear multiscale interactions can be effectively modeled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative macroscopic behavior are known, it is often difficult to derive a stochastic model that is consistent with observations. This is especially true for systems such as turbulence where the perturbations do not behave like Gaussian white noise, introducing non-Markovian behavior to the dynamics. We address these challenges with a framework for identifying interpretable stochastic nonlinear dynamics from experimental data, using both forward and adjoint Fokker-Planck equations to enforce statistical consistency. If the form of the Langevin equation is unknown, a simple sparsifying procedure can provide an appropriate functional form. We demonstrate that this method can effectively learn stochastic models in two artificial examples: recovering a nonlinear Langevin equation forced by colored noise and approximating the second-order dynamics of a particle in a double-well potential with the corresponding first-order bifurcation normal form. Finally, we apply the proposed method to experimental measurements of a turbulent bluff body wake and show that the statistical behavior of the center of pressure can be described by the dynamics of the corresponding laminar flow driven by nonlinear state-dependent noise.

Summary

We haven't generated a summary for this paper yet.