Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear relations with disjoint supports and average sizes of kernels (2009.00937v3)

Published 2 Sep 2020 in math.RA, math.CO, and math.GR

Abstract: We study the effects of imposing linear relations within modules of matrices on average sizes of kernels. The relations that we consider can be described combinatorially in terms of partial colourings of grids. The cells of these grids correspond to positions in matrices and each defining relation involves all cells of a given colour. We prove that imposing such relations arising from "admissible" partial colourings has no effect on average sizes of kernels over finite quotients of discrete valuation rings. This vastly generalises the known fact that average sizes of kernels of general square and traceless matrices of the same size coincide over such rings. As a group-theoretic application, we explicitly determine zeta functions enumerating conjugacy classes of finite $p$-groups derived from free class-$3$-nilpotent groups for $p \geqslant 5$.

Summary

We haven't generated a summary for this paper yet.