Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a perturbed fast diffusion equation with dynamic boundary conditions (2009.00883v1)

Published 2 Sep 2020 in math.AP

Abstract: This paper discusses finite time extinction for a perturbed fast diffusion equation with dynamic boundary conditions. The fast diffusion equation has the characteristic property of decay, such as the solution decays to zero in a finite amount of time depending upon the initial data. In the target problem, some $p$-th or $q$-th order perturbation term may work to blow up within this period. The problem arises from the conflict between the diffusion and the blow up, in the bulk and on the boundary. Firstly, the local existence and uniqueness of the solution are obtained. Finally, a result of finite time extinction for some small initial data is presented.

Summary

We haven't generated a summary for this paper yet.