Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exact square coloring of subcubic planar graphs (2009.00843v3)

Published 2 Sep 2020 in cs.DM and math.CO

Abstract: We study the exact square chromatic number of subcubic planar graphs. An exact square coloring of a graph G is a vertex-coloring in which any two vertices at distance exactly 2 receive distinct colors. The smallest number of colors used in such a coloring of G is its exact square chromatic number, denoted $\chi{\sharp 2}(G)$. This notion is related to other types of distance-based colorings, as well as to injective coloring. Indeed, for triangle-free graphs, exact square coloring and injective coloring coincide. We prove tight bounds on special subclasses of planar graphs: subcubic bipartite planar graphs and subcubic K 4-minor-free graphs have exact square chromatic number at most 4. We then turn our attention to the class of fullerene graphs, which are cubic planar graphs with face sizes 5 and 6. We characterize fullerene graphs with exact square chromatic number 3. Furthermore, supporting a conjecture of Chen, Hahn, Raspaud and Wang (that all subcubic planar graphs are injectively 5-colorable) we prove that any induced subgraph of a fullerene graph has exact square chromatic number at most 5. This is done by first proving that a minimum counterexample has to be on at most 80 vertices and then computationally verifying the claim for all such graphs.

Citations (8)

Summary

We haven't generated a summary for this paper yet.