Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conley Index Theory and the Attractor-Repeller Decomposition for Differential Inclusions (2009.00696v2)

Published 1 Sep 2020 in math.DS

Abstract: The Conley index theory is a powerful topological tool for describing the basic structure of dynamical systems. One important feature of this theory is the attractor-repeller decomposition of isolated invariant sets. In this decomposition, all points in the invariant set belong to the attractor, its associated dual repeller, or a connecting region. In this connecting region, points tend towards the attractor in forwards time and the repeller in backwards time. This decomposition is also, in a certain topological sense, stable under perturbation. Conley theory is well-developed for flows and homomorphisms, and has also been extended to some more abstract settings such as semiflows and relations. In this paper we aim to extend the attractor-repeller decomposition, including its stability under perturbation, to continuous time set-valued dynamical systems. The most common of these systems are differential inclusions such as Filippov systems.

Summary

We haven't generated a summary for this paper yet.