Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of metrizable Esakia spaces via some forbidden configurations (2009.00168v1)

Published 1 Sep 2020 in math.LO

Abstract: By Priestley duality, each bounded distributive lattice is represented as the lattice of clopen upsets of a Priestley space, and by Esakia duality, each Heyting algebra is represented as the lattice of clopen upsets of an Esakia space. Esakia spaces are those Priestley spaces that satisfy the additional condition that the downset of each clopen is clopen. We show that in the metrizable case Esakia spaces can be singled out by forbidding three simple configurations. Since metrizability yields that the corresponding lattice of clopen upsets is countable, this provides a characterization of countable Heyting algebras. We show that this characterization no longer holds in the uncountable case. Our results have analogues for co-Heyting algebras and bi-Heyting algebras, and they easily generalize to the setting of p-algebras.

Summary

We haven't generated a summary for this paper yet.