Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling the Impact of 5G Leakage on Weather Prediction (2008.13498v1)

Published 31 Aug 2020 in eess.SP, cs.SY, and eess.SY

Abstract: The 5G band allocated in the 26 GHz spectrum referred to as 3GPP band n258, has generated a lot of anxiety and concern in the meteorological data forecasting community including the National Oceanic and Atmospheric Administration (NOAA). Unlike traditional spectrum coexistence problems, the issue here stems from the leakage of n258 band transmissions impacting the observations of passive sensors (e.g. AMSU-A) operating at 23.8 GHz on weather satellites used to detect the amount of water vapor in the atmosphere, which in turn affects weather forecasting and predictions. In this paper, we study the impact of 5G leakage on the accuracy of data assimilation based weather prediction algorithms by using a first order propagation model to characterize the effect of the leakage signal on the brightness temperature (atmospheric radiance) and the induced noise temperature at the receiving antenna of the passive sensor (radiometer) on the weather observation satellite. We then characterize the resulting inaccuracies when using the Weather Research and Forecasting Data Assimilation model (WRFDA) to predict temperature and rainfall. For example, the impact of 5G leakage of -20dBW to -15dBW on the well-known Super Tuesday Tornado Outbreak data set, affects the meteorological forecasting up to 0.9 mm in precipitation and 1.3 {\deg}C in 2m-temperature. We outline future directions for both improved modeling of 5G leakage effects as well as mitigation using cross-layer antenna techniques coupled with resource allocation.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com