Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equilibrium Equality for Free Energy Difference (2008.13437v1)

Published 31 Aug 2020 in cond-mat.stat-mech

Abstract: Jarzynski Equality (JE) and the thermodynamic integration method are conventional methods to calculate free energy difference (FED) between two equilibrium states with constant temperature of a system. However, a number of ensemble samples should be generated to reach high accuracy for a system with large size, which consumes a lot computational resource. Previous work had tried to replace the non-equilibrium quantities with equilibrium quantities in JE by introducing a virtual integrable system and it had promoted the efficiency in calculating FED between different equilibrium states with constant temperature. To overcome the downside that the FED for two equilibrium states with different temperature can't be calculated efficiently in previous work, this article derives out the Equilibrium Equality for FED between any two different equilibrium states by deriving out the equality for FED between states with different temperatures and then combining the equality for FED between states with different volumes. The equality presented in this article expresses FED between any two equilibrium states as an ensemble average in one equilibrium state, which enable the FED between any two equilibrium states can be determined by generating only one canonical ensemble and thus the samples needed are dramatically less and the efficiency is promoted a lot. Plus, the effectiveness and efficiency of the equality are examined in Toda-Lattice model with different dimensions.

Summary

We haven't generated a summary for this paper yet.