Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projectivity in (bounded) integral residuated lattices (2008.13181v4)

Published 30 Aug 2020 in math.LO

Abstract: In this paper we study projective algebras in varieties of (bounded) commutative integral residuated lattices from an algebraic (as opposed to categorical) point of view. In particular we use a well-established construction in residuated lattices: the ordinal sum. Its interaction with divisibility makes our results have a better scope in varieties of divisibile commutative integral residuated lattices, and it allows us to show that many such varieties have the property that every finitely presented algebra is projective. In particular, we obtain results on (Stonean) Heyting algebras, certain varieties of hoops, and product algebras. Moreover, we study varieties with a Boolean retraction term, showing for instance that in a variety with a Boolean retraction term all finite Boolean algebras are projective. Finally, we connect our results with the theory of Unification.

Summary

We haven't generated a summary for this paper yet.