Papers
Topics
Authors
Recent
Search
2000 character limit reached

Using Machine Learning for Particle Track Identification in the CLAS12 Detector

Published 28 Aug 2020 in cs.CV and physics.ins-det | (2008.12860v2)

Abstract: Particle track reconstruction is the most computationally intensive process in nuclear physics experiments. Traditional algorithms use a combinatorial approach that exhaustively tests track measurements ("hits") to identify those that form an actual particle trajectory. In this article, we describe the development of four ML models that assist the tracking algorithm by identifying valid track candidates from the measurements in drift chambers. Several types of machine learning models were tested, including: Convolutional Neural Networks (CNN), Multi-Layer Perceptrons (MLP), Extremely Randomized Trees (ERT) and Recurrent Neural Networks (RNN). As a result of this work, an MLP network classifier was implemented as part of the CLAS12 reconstruction software to provide the tracking code with recommended track candidates. The resulting software achieved accuracy of greater than 99\% and resulted in an end-to-end speedup of 35\% compared to existing algorithms.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.