Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Machine Learning for Particle Track Identification in the CLAS12 Detector (2008.12860v2)

Published 28 Aug 2020 in cs.CV and physics.ins-det

Abstract: Particle track reconstruction is the most computationally intensive process in nuclear physics experiments. Traditional algorithms use a combinatorial approach that exhaustively tests track measurements ("hits") to identify those that form an actual particle trajectory. In this article, we describe the development of four ML models that assist the tracking algorithm by identifying valid track candidates from the measurements in drift chambers. Several types of machine learning models were tested, including: Convolutional Neural Networks (CNN), Multi-Layer Perceptrons (MLP), Extremely Randomized Trees (ERT) and Recurrent Neural Networks (RNN). As a result of this work, an MLP network classifier was implemented as part of the CLAS12 reconstruction software to provide the tracking code with recommended track candidates. The resulting software achieved accuracy of greater than 99\% and resulted in an end-to-end speedup of 35\% compared to existing algorithms.

Citations (6)

Summary

We haven't generated a summary for this paper yet.