Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art (2008.12646v3)

Published 26 Aug 2020 in cs.LG and stat.ML

Abstract: Graphs have been widely used to represent complex data in many applications. Efficient and effective analysis of graphs is important for graph-based applications. However, most graph analysis tasks are combinatorial optimization (CO) problems, which are NP-hard. Recent studies have focused a lot on the potential of using ML to solve graph-based CO problems. Most recent methods follow the two-stage framework. The first stage is graph representation learning, which embeds the graphs into low-dimension vectors. The second stage uses ML to solve the CO problems using the embeddings of the graphs learned in the first stage. The works for the first stage can be classified into two categories, graph embedding (GE) methods and end-to-end (E2E) learning methods. For GE methods, learning graph embedding has its own objective, which may not rely on the CO problems to be solved. The CO problems are solved by independent downstream tasks. For E2E learning methods, the learning of graph embeddings does not have its own objective and is an intermediate step of the learning procedure of solving the CO problems. The works for the second stage can also be classified into two categories, non-autoregressive methods and autoregressive methods. Non-autoregressive methods predict a solution for a CO problem in one shot. A non-autoregressive method predicts a matrix that denotes the probability of each node/edge being a part of a solution of the CO problem. The solution can be computed from the matrix. Autoregressive methods iteratively extend a partial solution step by step. At each step, an autoregressive method predicts a node/edge conditioned to current partial solution, which is used to its extension. In this survey, we provide a thorough overview of recent studies of the graph learning-based CO methods. The survey ends with several remarks on future research directions.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yun Peng (24 papers)
  2. Byron Choi (9 papers)
  3. Jianliang Xu (36 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.