Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of In-App Advertising Issues Based on Large Scale App Review Analysis (2008.12112v1)

Published 22 Aug 2020 in cs.CY and cs.SE

Abstract: In-app advertising closely relates to app revenue. Reckless ad integration could adversely impact app reliability and user experience, leading to loss of income. It is very challenging to balance the ad revenue and user experience for app developers. In this paper, we present a large-scale analysis on ad-related user feedback. The large user feedback data from App Store and Google Play allow us to summarize ad-related app issues comprehensively and thus provide practical ad integration strategies for developers. We first define common ad issues by manually labeling a statistically representative sample of ad-related feedback, and then build an automatic classifier to categorize ad-related feedback. We study the relations between different ad issues and user ratings to identify the ad issues poorly scored by users. We also explore the fix durations of ad issues across platforms for extracting insights into prioritizing ad issues for ad maintenance. We summarize 15 types of ad issues by manually annotating 903/36,309 ad-related user reviews. From a statistical analysis of 36,309 ad-related reviews, we find that users care most about the number of unique ads and ad display frequency during usage. Besides, users tend to give relatively lower ratings when they report the security and notification related issues. Regarding different platforms, we observe that the distributions of ad issues are significantly different between App Store and Google Play. Moreover, some ad issue types are addressed more quickly by developers than other ad issues. We believe the findings we discovered can benefit app developers towards balancing ad revenue and user experience while ensuring app reliability.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Cuiyun Gao (97 papers)
  2. Jichuan Zeng (10 papers)
  3. David Lo (229 papers)
  4. Xin Xia (171 papers)
  5. Irwin King (170 papers)
  6. Michael R. Lyu (176 papers)

Summary

We haven't generated a summary for this paper yet.