Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimising AI Training Deployments using Graph Compilers and Containers (2008.11675v2)

Published 26 Aug 2020 in cs.DC, cs.AI, and cs.PF

Abstract: AI applications based on Deep Neural Networks (DNN) or Deep Learning (DL) have become popular due to their success in solving problems likeimage analysis and speech recognition. Training a DNN is computationally intensive and High Performance Computing(HPC) has been a key driver in AI growth. Virtualisation and container technology have led to the convergence of cloud and HPC infrastructure. These infrastructures with diverse hardware increase the complexity of deploying and optimising AI training workloads. AI training deployments in HPC or cloud can be optimised with target-specific libraries, graph compilers, andby improving data movement or IO. Graph compilers aim to optimise the execution of a DNN graph by generating an optimised code for a target hardware/backend. As part of SODALITE (a Horizon 2020 project), MODAK tool is developed to optimise application deployment in software defined infrastructures. Using input from the data scientist and performance modelling, MODAK maps optimal application parameters to a target infrastructure and builds an optimised container. In this paper, we introduce MODAK and review container technologies and graph compilers for AI. We illustrate optimisation of AI training deployments using graph compilers and Singularity containers. Evaluation using MNIST-CNN and ResNet50 training workloads shows that custom built optimised containers outperform the official images from DockerHub. We also found that the performance of graph compilers depends on the target hardware and the complexity of the neural network.

Citations (2)

Summary

We haven't generated a summary for this paper yet.