Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbiased estimator for the variance of the leave-one-out cross-validation estimator for a Bayesian normal model with fixed variance (2008.10859v2)

Published 25 Aug 2020 in stat.ME

Abstract: When evaluating and comparing models using leave-one-out cross-validation (LOO-CV), the uncertainty of the estimate is typically assessed using the variance of the sampling distribution. Considering the uncertainty is important, as the variability of the estimate can be high in some cases. An important result by Bengio and Grandvalet (2004) states that no general unbiased variance estimator can be constructed, that would apply for any utility or loss measure and any model. We show that it is possible to construct an unbiased estimator considering a specific predictive performance measure and model. We demonstrate an unbiased sampling distribution variance estimator for the Bayesian normal model with fixed model variance using the expected log pointwise predictive density (elpd) utility score. This example demonstrates that it is possible to obtain improved, problem-specific, unbiased estimators for assessing the uncertainty in LOO-CV estimation.

Summary

We haven't generated a summary for this paper yet.