Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Advantage of Conditional Meta-Learning for Biased Regularization and Fine-Tuning

Published 25 Aug 2020 in cs.LG and stat.ML | (2008.10857v1)

Abstract: Biased regularization and fine-tuning are two recent meta-learning approaches. They have been shown to be effective to tackle distributions of tasks, in which the tasks' target vectors are all close to a common meta-parameter vector. However, these methods may perform poorly on heterogeneous environments of tasks, where the complexity of the tasks' distribution cannot be captured by a single meta-parameter vector. We address this limitation by conditional meta-learning, inferring a conditioning function mapping task's side information into a meta-parameter vector that is appropriate for that task at hand. We characterize properties of the environment under which the conditional approach brings a substantial advantage over standard meta-learning and we highlight examples of environments, such as those with multiple clusters, satisfying these properties. We then propose a convex meta-algorithm providing a comparable advantage also in practice. Numerical experiments confirm our theoretical findings.

Citations (35)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.