Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Semiotics (2008.10522v2)

Published 24 Aug 2020 in cs.CL and cs.AI

Abstract: Recognizing a basic difference between the semiotics of humans and machines presents a possibility to overcome the shortcomings of current speech assistive devices. For the machine, the meaning of a (human) utterance is defined by its own scope of actions. Machines, thus, do not need to understand the conventional meaning of an utterance. Rather, they draw conversational implicatures in the sense of (neo-)Gricean pragmatics. For speech assistive devices, the learning of machine-specific meanings of human utterances, i.e. the fossilization of conversational implicatures into conventionalized ones by trial and error through lexicalization appears to be sufficient. Using the quite trivial example of a cognitive heating device, we show that - based on dynamic semantics - this process can be formalized as the reinforcement learning of utterance-meaning pairs (UMP).

Summary

We haven't generated a summary for this paper yet.