Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computing the Real Isolated Points of an Algebraic Hypersurface (2008.10331v1)

Published 24 Aug 2020 in cs.CG and cs.SC

Abstract: Let $\mathbb{R}$ be the field of real numbers. We consider the problem of computing the real isolated points of a real algebraic set in $\mathbb{R}n$ given as the vanishing set of a polynomial system. This problem plays an important role for studying rigidity properties of mechanism in material designs. In this paper, we design an algorithm which solves this problem. It is based on the computations of critical points as well as roadmaps for answering connectivity queries in real algebraic sets. This leads to a probabilistic algorithm of complexity $(nd){O(n\log(n))}$ for computing the real isolated points of real algebraic hypersurfaces of degree $d$. It allows us to solve in practice instances which are out of reach of the state-of-the-art.

Citations (4)

Summary

We haven't generated a summary for this paper yet.