Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of probability density functions via location-scale finite mixtures in Lebesgue spaces (2008.09787v3)

Published 22 Aug 2020 in math.ST and stat.TH

Abstract: The class of location-scale finite mixtures is of enduring interest both from applied and theoretical perspectives of probability and statistics. We prove the following results: to an arbitrary degree of accuracy, (a) location-scale mixtures of a continuous probability density function (PDF) can approximate any continuous PDF, uniformly, on a compact set; and (b) for any finite $p\ge1$, location-scale mixtures of an essentially bounded PDF can approximate any PDF in $\mathcal{L}{p}$, in the $\mathcal{L}{p}$ norm.

Summary

We haven't generated a summary for this paper yet.